11. Numerical Techniques

Efficient Implementation of Gaussian Belief Propagation Solver for Large
Sparse Diagonally Dominant Linear Systems

Yousef El-Kurdi, Warren J. Gross and Dennis Giannacopoulos
Department of Electrical and Computer Engineering, McGill University
3480 University Street, Montreal (QC), H3A 2A7, Canada
yousef.el-kurdi @mail.mcgill.ca, warren.gross@mcgill.ca, dennis.giannacopoulos @mcgill.ca

Abstract—We present a fast and parallelizable variant of
the recently developed Gaussian Belief Propagation solver that
demonstrates 17x speedups over basic implementations. Com-
pared to the diagonally-preconditioned conjugate gradient, our
algorithm demonstrates empirical improvements up to 6x in
iteration count and speedups of up to 1.8x in execution time. Also
we present variant of the algorithm that is aimed for enhanced
implementation on parallel architectures.

I. INTRODUCTION

Belief propagation (BP) algorithms, first invented by Pearl
[1], are probabilistic inferencing algorithms based on recursive
message updates that in general exhibit low complexity and
are inherently parallel; both of which properties can be greatly
exploited in processing large sparse linear systems. It is shown
in [2] that BP over Gaussian graphical models (GaBP) can be
used as a solver for linear systems of equations Ax = b.

It can be easily seen that the solution of the linear system
x* = A~1b can be found by solving the optimization problem:

1
mgxexp(—ixTAx +v7x) (1)

The exponential expression in (1) resembles a Gaussian mul-
tivariate probability distribution p(x) where x is the nodal
variables vector and a covariance matrix A~!. Through some
algebraic manipulation, it can be shown that the solution to the
linear system x* is actually the means of the nodal variables
x of the probability distribution p(x) defined as p = A~'b.
Hence the solution to the linear system is transferred to a
probabilistic inference problem of finding the means of the
variables in the multivariate distribution p(x).

The matrix A;; with nodal variables represented by = can
be viewed as an undirected graphical model, also referred
to as Markov random field, where non-zeros (A4;; # 0)
represents undirected edges between variable nodes ¢ and j.
By factoring the graph’s distribution p(x) into self potential
functions ¢;(z;) = exp(f%Aiixf + b;x;) and edge potentials
Vi j(wi, ;) £ exp(—3gxiA;jz;), continuous formulation of
belief propagation algorithm can then be applied to infer the
means of the nodal variables Z;. In belief propagation, each
node n; computes a new belief message towards node n; on
a particular edge (i — j) using all messages received from
nodes in the neighbourhood N(i) of node n; excluding the
message received from n;, with message updates from each
node performed either sequentially or concurrently subject
to a specific scheduling. Since the underlying distribution is
Gaussian, the belief updates, shown in (2) and (3), will be

based on propagating only two variables: the estimated nodal
means p and variances P. For detailed derivation of GaBP,
the reader is encouraged to refer to [2] and [3].

-1
Py = —A%(Au + Z Pisi) 2)
keEN(i)\

-1

ping = —Aij(Ai+ Y Pesi) (it) o)
kKEN\J KEN\J

3)

GaBP was shown in [4] to converge for a particular class of
matrices referred to as walk-summable models, which states
that the spectral radius of the normalized off-diagonals of A
in the absolute sense should be p(|I — D~2AD~z|) < 1,
where D is the diagonal elements of A. Such class of matrices
includes the symmetric positive-definite diagonally dominant
systems which arise in many key applications such as the
Finite Element Method.

In this paper, we will present an efficient implementation of
GaBP solver ideal for processing large sparse systems and that
is suitable for implementation on both sequential as well as
parallel environments. In addition, we will demonstrate the
parallelism capabilities by simulating a scheduling-efficient
parallel variant of our implementation that efficiently limits the
iteration increase due to fully parallel scheduling. Also, since
previous work did not present detailed comparison analysis
of GaBP with Conjugate Gradient method, we will present
empirical results of GaBP convergence performance compared
to the diagonally-Preconditioned Conjugate Gradients (PCG)
method, and we will show that our implementation efficient
GaBP can demonstrate both a reduction in iteration count as
well as a speedup in execution time for large sparse diagonally
dominant systems.

II. EFFICIENT IMPLEMENTATION GABP ALGORITHM

In practical implementations of GaBP, the actual perfor-
mance will depend on certain factors mainly, the used sparse
data-structure, and the message transfer medium, e.g. memory
bandwidth. For general purpose CPU implementation, the
choice of sparse data-structure will have the critical impact
on performance due to message access time, data-locality and
vectorization of loops. For example, hash-maps (unordered-
maps) can be used to provide constant-time access of data,
however they exhibit poor data locality.

11. Numerical Techniques

The paper’s main contribution is the introduction of a
fast and efficient implementation algorithm of GaBP suitable
for execution on both sequential as well as parallel archi-
tectures. Since our algorithm employs constant-time access
data-structures such as queues or stacks, it achieves optimum
message processing performance of O(nnz) per iteration
which is comparable to PCG. In addition, the new algorithm
exhibits more data locality and can readily exploit instruction
level parallelism (ILP) which makes its performance compet-
itive with well known iterative methods such as the Jacobi,
the Gauss-Seidel, the Successive Overrelaxation, and the CG
method.

In addition to its demonstrated efficiency for sequential
implementations, the GaBP algorithm is inherently an em-
barrassingly parallel algorithm. Typically it is expected that
the number of iterations for fully parallel scheduled GaBP to
be increased, however we are presenting here a new hybrid
sequential-parallel scheduling algorithm that should optimally
limit this increase in iterations. Hence our hybrid implementa-
tion will efficiently exploit parallelism in both ILP, and course-
grained multi-processing.

IIT. RESULTS

The graphs in Fig. 1 (a) show the time speedups that can be
achieved using our proposed GaBP implementation algorithm
compared with the basic algorithm using both ordered-maps
and hash-maps as data-structures to store messages. All exe-
cutions were running sequential scheduling GaBP on a single
CPU core (Intel Core2 Quad @ 2.8GHz) running Linux. In all
test cases of random sparse matrices, our implementation has
demonstrated speedups of up to 17x with an increasing overall
trend as the number of non-zeros increases. This speedup was
mainly due to the exploitation of ILP parallelism facilitated
by the enhanced data-locality of the new algorithm.

The PCG method was used for the performance comparison
with GaBP. The PCG was executed on the same CPU and was
obtained from the GMM++ library [5], which is widely used
for FEM applications. Iterations were stopped until the residue
reached € = 10~? using double-precision computation. The
test matrices are obtained from [6], with the exception of one
matrix which was randomly generated by Matlab. The matrices
were made diagonally dominant by loading the diagonals
with a uniformly distributed positive random number having a
standard deviation o € [1072,102]. The plots in Fig. 1 (b and
¢) show the performance results against PCG. Iteration count
reductions, up to 6x, are obtained by GaBP. Also our GaBP
implementation was able to achieve time speedups for most
cases reaching up to 1.8x.

The parallel behaviour of our hybrid scheduling GaBP
algorithm was simulated on the same CPU. Fig. 1 (d) shows
the number of iterations (scaled by the maximum number
of iterations) increase due to parallelism as the number of
CPU partitions increases from 1 to 4096. For this experiment
a simple partitioning scheme was used by assigning nodes
sequentially based on the order of their matrix index. It can be
seen that we obtain slowest and limited increase in iterations

TABLE I
TEST MATRICES

Category ecology1 G3_circuit thermal2 random
N 1,000,000 1,585,478 1,228,045 1,000,000
Non-zeros | 4996000 7,660,826 8580313 8,999,976
o5
g
2 S
E £
i H
& o
t 8
= g
Q 2
o
oy
E
dlos T 01 012 014 016 018 02 022 024 026 10~ 07 100 10" 10 10°
Density % Diagonal loading o (log scale)
(a) (b)
Seecologyl [Secologyl
|~-G3_circui 63 _circtui]
2 S thermal2 60| S-random
| random o
= @
S £
§ § 49
2i g
2 £ 3]
B %
8 B
3
51 8 @ 10f
G % B T2 s T oz 50 oss

10° 10" 10° _:
Diagonal loading o (log scale) Number of partitions for o = 1072 (log 2 scale)

(c) (@

Fig. 1. GaBP implementation speedup (a) New FIFO-based implementation
speedup over map or hash-map basic implementations, (b) Iteration speedup
over PCG, (c) GaBP iterations, (d) Hybrid GaBP iteration increase

for matrices with banded sparsity structure when compared
to “random” since our hybrid-scheduling algorithm can better
exploit the local node connectivities for such matrices.

In conclusion, a new efficient GaBP implementation al-
gorithm is presented demonstrating speedups of up to 17x
over basic implementations. Also, both improvements in time
speedup and reduction in iteration count over PCG was
demonstrated using our modified algorithm. Finally, a parallel-
sequential hybrid scheduling GaBP variant was simulated to
demonstrate ability to achieve promising parallel performance.
The long version of the paper will present a detailed analysis
of the new algorithm for a wider class of matrices. In addition,
we will demonstrate the implementation and the performance
of the hybrid-scheduled GaBP on parallel architectures such
as GPUs.

REFERENCES

[1] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann, 1988.

[2] O. Shental and D. Bickson et. al., in Information Theory, 2008. ISIT 2008.
IEEE International Symposium on, 6-11 2008, pp. 1863-1867.

[3]1 Y. Weiss et. al., Neural Comp., vol. 13, no. 10, pp. 2173-2200, 2001.

[4] J. K. Johnson et. al., in in Advances in Neural Information Processing
Systems 18. MIT Press, 2006, pp. 579-586.

[S] Gmm++: a generic template matrix c++library. [Online]. Available:
http://download.gna.org/getfem/html/homepage/gmm.html

[6] The University of Florida Sparse Matrix Collection. [Online]. Available:
http://www.cise.ufl.edu/research/sparse/matrices

